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Free-boundary, non-stellarator-symmetric calculations using the Stepped Pressure Equilibrium
Code (SPEC ) are described. It is verified that SPEC is correctly computing the “vacuum” field
produced by a set of external, current-carrying loops as calculated using the Biot-Savart rule.

A. Introduction

The Stepped Pressure Equilibrium Code (SPEC ) is
based on the multi-region relaxed magnetohydrodynamic
(MRxMHD) equilibrium model introduced by Dewar and
co-workers [1–3]. This model was motivated, in part, by
the results of Bruno & Laurence [4], who presented theo-
rems guaranteeing the existence of well-defined, stepped-
pressure solutions to the MHD equilibrium equations
in three-dimensional (3D) geometry provided certain
conditions reminiscent of the Kolmogorov-Arnold-Moser
(KAM) theorem [5, 6] are satisfied.

Dennis et al. have presented generalizations of
MRxMHD that include flow [7] and pressure anisotropy
[8]; and Lingam et al. [9] have presented a model of multi-
region relaxed Hall MHD. The static equilibrium model
has recently been extended to a fully dynamical model
by Dewar et al. [10]. A generalization of MRxMHD that
accommodates globally continuous and smooth equilib-
ria, with magnetic islands and chaos, in 3D geometry has
been described by Hudson & Kraus [11].

The algorithm and numerical details of SPEC are de-
scribed by Hudson et al. [12]. SPEC was used by
Dennis et al. [13] to investigate the formation of the
single-helical and double-helical states in a reversed
field pinch; and by Loizu et al. [14] to compute the
pressure-driven 1/x and the δ-function singular current-
densities in ideal-MHD equilibria with resonantly per-
turbed boundaries (this required taking the “ideal limit”,
in which MRxMHD reduces to ideal MHD [15]). A lin-
earized version of SPEC and the full nonlinear version
were verified against analytic calculations of resonant
magnetic perturbation penetration in cylindrical geom-
etry by Loizu et al. [16, 17]. Fixed-boundary, vacuum
SPEC calculations in strongly shaped stellarator geome-
tries were verified [18] against a Biot-Savart code.

This paper presents the first free-boundary calcula-
tions using SPEC . The outline of this paper is as fol-
lows. First, a brief description of MRxMHD is pre-
sented. Then, the numerical discretization employed
by SPEC and various recent code modifications are de-

scribed. These include: using Chebyshev polynomials
to represent the radial dependence of the Fourier har-
monics of the vector potential; the inclusion of the non-
“stellarator-symmetric” terms, so that equilibria with
arbitrary geometries can be computed; the augmenta-
tion of the fixed-boundary calculation with a vacuum
field solver; and the implementation of a virtual-casing
method for calculating the magnetic field produced by
the plasma currents at a location external to the plasma.
Free-boundary equilibrium states can now be computed.
Some example calculations are then presented.

B. MRxMHD

The classic MHD energy functional [19] is given by

W ≡
∫

V

(

p

γ − 1
+

B2

2

)

dv, (1)

where V is the plasma volume, which is bounded by a
surface, ∂V, to which the magnetic field is assumed to be
tangential.

Restricting attention to ideal variations in the pres-
sure, δp = (γ − 1) ξ · ∇p − γ∇ · (p ξ), and magnetic field,
δB = ∇× (ξ×B), the first order variation in W induced
by a plasma displacement, ξ, assumed to vanish at the
plasma boundary, is given by

δW ≡
∫

V

(∇p − j × B) · ξ dv. (2)

Extremizing solutions, i.e., fixed-boundary, ideal-MHD
equilibria, satisfy the ideal force-balance condition,
∇p = j × B.

Ideal variations constrain the topology of structures
traced out by the magnetic fieldlines. Multi-region, re-
laxed MHD (MRxMHD) allows for a less-restrictive class
of variations; variations that allow the magnetic field to
“tear” and for magnetic islands and chaotic fieldlines to
emerge. Some constraints are included to avoid “globally
relaxed” solutions.
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The “relaxed” aspect of MRxMHD follows the ideas
under-pinning Taylor relaxation [20], namely that weakly
resistive plasmas will dynamically evolve to minimize the
energy under the constraint that the helicity,

K ≡
∫

V

A · B dv, (3)

is conserved [21, 22], where B = ∇×A. Mathematically,
solutions are constructed by finding the minimum of the
function W subject to the constraint K = K0, which are
identified as extrema of F ≡ W − µ(K − K0)/2, where
µ is a Lagrange multiplier, and the factor of 1/2 is intro-
duced for convenience. Allowing for unrestricted varia-
tions in A, and with the only constraint on the pressure
being pV γ = P , where V is the volume of V and P is
a constant, magnetic fields that extremize F satisfy the
Beltrami equation, namely ∇×B = µB, and the pressure
is constant, p = P/V γ .

The “multi-region” aspect of MRxMHD is to partition
the plasma volume into a finite number, NV , of subre-
gions, Vv, which are separated by a set of nested inter-
faces, Iv, for v = 1, . . . , NV with INV

= ∂V, that are
“ideally constrained” to remain intact during the mini-
mization and therefore constitute barriers that frustrate
global relaxation.

The MRxMHD energy principle is to minimize the
plasma energy subject to the constraints of conserved
helicity in each of the Vv. This is represented mathemat-
ically as finding extrema of

F =

NV
∑

v=1

[Wv − µv (Kv − Kv,o) /2] , (4)

where Wv and Kv are the energy and helicity integrals,
as given in Eqn. 1 and Eqn. 3 but restricted to the v-th
region.

The magnetic field is constrained to remain tangential
to the Iv, but within each volume the topology of the
field is unconstrained. (In the limit Nv → ∞ of infinitely
many ideal interfaces [15], the topology is constrained
everywhere.)

The constraint on the pressure is pvV
γ
v = Pv.

The internal energy in Vv is
∫

Vv

pv/(γ − 1) dv =

PvV
(1−γ)
v /(γ − 1), and the first variation of this due to

a deformation, ξ, of the ideal interfaces is −p
∫

∂Vv

ξ · ds.
Constraints on the enclosed toroidal and poloidal fluxes
in each volume, ∆ψt,v and ∆ψp,v, must also be included.

The Euler-Lagrange equations for extremizing states
allowing for variations in the magnetic vector potential
in each region and for variations in the geometry of the
ideal interfaces are: (i) in each Vv the magnetic field is a
linear force-free field, ∇×B = µvB; and (ii) across each
of the Iv, the total pressure is continuous, [[p+B2/2]] =
0. To avoid a problem of small-divisors, the rotational-
transform on the ideal interfaces are generally required
to be strongly irrational [4, 12, 23]. Such equilibria are
called stepped-pressure states.

In each region, given the geometry of the adjacent in-
terfaces, there are three parameters that define the solu-
tion for the magnetic field, namely the enclosed toroidal
and poloidal fluxes, ∆ψt,v and ∆ψp,v, and the required

helicity, Ko,v. (This paper shall leave the question of
bifurcations to future work.) As is typical for using La-
grange multipliers, the value of the helicity multiplier,
µv, must be adjusted to enforce the helicity constraint;
and the appropriate value of µv is only known a posteori.

Alternatively, it is possible, in some cases, to instead
constrain µv, which is related to the parallel current-
density, µ = j · B/B2. In this case the helicity will only
be known a posteori.

It is sometimes desirable to allow the value of Kv,0 and
µv, and either one or both of ∆ψt,v and ∆ψp,v to vary
in order to obtain solutions with, for example, prescribed
rotational transform on the interfaces, or to constrain the
currents passing through certain surfaces. This will be
discussed below.

C. free-boundary

The MRxMHD energy functional just described can
easily be generalized to describe free-boundary equilibria
by including an additional volume that lies outside the
plasma in which the vacuum field is to be calculated.
Vacuum fields satisfy ∇ × B = 0, and so are of course
a special class of Beltrami fields, namely Beltrami fields
with µ = 0. Most of the existing numerical architecture
developed for fixed-boundary SPEC [12] can be employed
for free-boundary SPEC .

The inner boundary of this additional region is coin-
cident with the plasma boundary. The outer boundary,
hereafter called the “computational boundary”, is arbi-
trary except that the computational boundary must lie
between the plasma boundary and the external current-
carrying coils. (Including a filamentary representation of
the external coils, for example, would result in singular-
ities in the magnetic field if they were to be included in
the computational domain.) The computational bound-
ary may be taken as a smooth approximation to the vac-
uum vessel, for example.

The normal magnetic field on the computational
boundary is not required to be zero and magnetic field-
lines can enter and leave the computational boundary.
The enclosed toroidal and poloidal fluxes, ∆ψt and ∆ψp,
in the vacuum region are not well-defined physical quan-
tities. As will be described in the following, ∆ψt and
∆ψp in the vacuum region can be iteratively adjusted to
enforce constraints on the total toroidal plasma current,
I, and the external coil current, G, linking the torus.

Given the geometry of the computational bound-
ary, x(θ, φ), where θ and φ are poloidal and toroidal
angles, the normal field magnetic field at the com-
putational boundary is, for convenience, written as
B · xθ × xφ = Bn, where xθ ≡ ∂x/∂θ and xφ ≡ ∂x/∂φ.
This has two components, Bn ≡ Bn

P + Bn
C , a part pro-

duced by plasma currents, Bn
P , which is a priori unknown

and must be computed self-consistently as part of the
equilibrium calculation; and a part produced by “coil”
currents external to the computational domain, Bn

C , and
this part is required as input.

The geometry of the ideal interfaces, Iv for
v = 1, . . . , NV , which includes the plasma boundary,
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is adjusted iteratively to construct a free-boundary
equilibrium that is consistent with force balance,
[[p + B2/2]] = 0 across each of the Iv. The computa-
tional boundary and Bn

C need not change during the cal-
culation. (Whether there is some computational advan-
tage in allowing the computational boundary to change
during the free-boundary iterations will be decided by
future work.)

D. numerical implementation

All even, doubly periodic functions are expressed us-
ing the following abbreviated representation for a double
Fourier series,

∑

i

fi cos(miθ − niφ)

≡
N

∑

n=0

f0,n cos(−nφ)

+

M
∑

m=1

N
∑

n=−N

fm,n cos(mθ − nNP φ), (5)

where M and N are the Fourier resolutions, and NP is
the field periodicity; and similarly for the odd functions.
This representation avoids redundancies.

The equilibrium calculation is initialized by pro-
viding a reasonable initial guess for the geome-
try of the v = 1, . . . , NV ideal interfaces, xv(θ, φ) ≡
Rv(θ, φ) cos φ î + Rv(θ, φ) sin φ ĵ+ Zv(θ, φ) k̂, where Rv

≡
∑

i

[

Rc
i,v cos(miθ − niφ) + Rs

i,v sin(miθ − niφ)
]

, and
similarly for Zv, and by providing a similar representa-
tion for the computational boundary. The poloidal an-
gle parameterization, θ, is at this stage arbitrary. The
toroidal angle, φ, used hereafter is the standard geomet-
ric cylindrical angle.

SPEC can operate in Cartesian [14] (i.e., slab), cylin-
drical [16, 17] and toroidal [12] geometry; but, for brevity,
the following will restrict attention to the toroidal case.
SPEC also allows for arbitrary, non-stellarator-symmetric
geometry; again, for brevity, the following shall display
only the stellarator-symmetric terms.

Given the geometry of the ideal interfaces and the
computational boundary, xv(θ, φ) for v = 1, . . . , NV + 1,
a continuous toroidal coordinate framework can be de-
fined by interpolation. In the annular volumes, Vv

for v = 2, . . . , NV + 1, which are bounded by xv−1(θ, φ)
and xv(θ, φ), the coordinates are defined by x(s, θ, φ) ≡
1
2 (1 − s) xv−1(θ, φ) + 1

2 (1 + s) xv(θ, φ), where the “lo-
cal” radial coordinate varies from s = −1 at the inner
boundary to s = +1 at the outer boundary. (A global
radial coordinate is not required; the calculation of the
magnetic field in each region is computed in parallel.)
The coordinate interpolation is implemented in Fourier
space, Rc

i (s) = 1
2 (1 − s)Rc

i,v−1 + 1
2 (1 + s)Rc

i,v, and simi-
larly for the Zs

i .

In the innermost simple-torus volume, V1, which is
bounded by I1 ≡ x1(θ, φ), the coordinates are con-

structed by first defining the “geometric center” of I1,

R0(φ) ≡
∮

R1(θ, φ) dl

L(φ)
, (6)

Z0(φ) ≡
∮

Z1(θ, φ) dl

L(φ)
, (7)

to be the coordinate axis, where the poloidal arclength
is L(φ) ≡

∮

dl, and dl/dθ ≡
√

∂θR1(θ, φ)2 + ∂θZ1(θ, φ)2.
The coordinate axis serves as the degenerate, v = 0 in-
terface. Introducing s̄ ≡ (s + 1)/2, so that s̄ ∈ [0, 1], the
coordinates in the innermost volume are defined by the
following “regularized” interpolation

Rc
i (s) = Rc

i,0 + (Rc
i,1 − Rc

i,0)fi, (8)

where fi = s̄ for mi = 0, and fi = s̄mi/2 for m 6= 0, and
similarly for the Zs

i . Such a construction encourages, but
provides no guarantee, that the coordinate surfaces will
not intersect. (For strongly shaped configurations, this
coordinate interpolation may need to be revised.) This
interpolation implies that the approximate minor radius
of each coordinate surface scales like r ∼ √

s.
In each volume, a mixed Fourier-Chebyshev represen-

tation is used for the vector potential, A. An appropriate
gauge [12] allows A = Aθ∇θ + Aφ∇φ. The components
of the vector potential are written

Aθ(s, θ, φ) =
∑

i

L
∑

l=0

Aθ,e,i,l Tl(s) cos(miθ − niφ), (9)

where L describes the Chebyshev resolution in a given re-
gion, and similarly for Aφ(s, θ, φ). Additional odd (i.e.,
sine) harmonics are also included for the non-stellarator-
symmetric case. The Chebyshev polynomials, Tl(s),
are determined using recurrence relations: T0(s) = 1,
T1(s) = s, and Tl(s) = 2 s Tl−1(s) − Tl−2(s) thereafter.

To accommodate the coordinate singularity that arises
at the coordinate axis, in the innermost toroidal re-
gion this representation is augmented with “radial reg-
ularization factors”, so that Tl(s) cos(miθ − niφ) →
s̄mi/2Tl(s) cos(miθ − niφ), for example.

Coordinate surfaces coincide with the Iv and the com-
putational boundary, and this by design makes it easy to
enforce the constraints on the magnetic vector potential
so that B · xθ × xφ = 0 on the Iv and B · xθ × xφ = Bn

on the computational boundary; but elsewhere in the re-
laxed volumes there is no assumed relationship between
the coordinates and the structure of the magnetic field,
which at this stage is yet to be determined.

The boundary condition that B · xθ × xφ = 0 at the
inner boundary of each region is enforced, and the re-
maining gauge freedom constrained, by requiring that
Aθ(−1, θ, φ) = 0 and Aφ(−1, θ, φ) = 0. The condition
that B · xθ × xφ = Bn at the outer boundary requires
that ∂θAφ(+1, θ, φ) − ∂φAθ(+1, θ, φ) = Bn. This condi-
tion, and the constraints on the enclosed toroidal and
poloidal fluxes, ∆ψt,v and ∆ψp,v, and the helicities, Kv,0,
in each region are enforced using Lagrange multipliers.

Temporarily ignoring the pressure, which does not al-
ter the solution of the Beltrami fields in each Vv and only
impacts the constraint of force balance, [[p + B2/2]] = 0



4

across the ideal interfaces, the degrees-of-freedom in the
constrained energy functional in each volume are the
coefficients of the Fourier-Chebyshev representation for
the vector potential and the various Lagrange multipli-
ers. Writing a ≡ {Aθ,e,i,l, Aφ,e,i,l, µ, ai, bi, c1, d1, ei}, and
dropping the “v” subscript for clarity, in each volume we
have

F [a] ≡ 1

2

∫

V

B · B dv − µ

2

[
∫

V

A · B dv − K0

]

+ ai

[

∑

l

Aθ,e,i,lTl(−1)

]

+ bi

[

∑

l

Aφ,e,i,lTl(−1)

]

+ c1

[

∑

l

Aθ,e,1,lTl(+1) − ∆ψt

]

+ d1

[

∑

l

Aφ,e,1,lTl(+1) − ∆ψp

]

+ ei

[

∑

l

(−miAφ,e,i,l − niAθ,e,i,l) Tl(+1) − Bn
o,i

]

(10)

where the ai and bi are Lagrange multipliers used to en-
force the combined gauge and boundary conditions on
the inner boundary, c1 and d1 are Lagrange multipliers
used to enforce the enclosed flux constraints, and the ei

are Lagrange multipliers used to enforce the boundary
condition B · xθ × xφ = Bn on the outer boundary; and
summation over i is assumed.

In each of the plasma volumes the outer boundary con-
dition is Bn

o,i = 0, and Bn 6= 0 is only allowed at the
computational boundary. In the innermost volume there
is no constraint on the enclosed poloidal flux and we may
set d1 = 0.

The energy functional can be written

F = 1
2a

TAa + 1
2µaTB a + aTC b, (11)

where A, B and C are matrices that depend only on the
geometry of the adjacent interfaces; and b represents the
boundary conditions, namely (∆ψt,∆ψp,Ko)

T and the
“odd” Fourier harmonics of the total normal field on the
outer interface, Bn

o,i. (For non-stellarator-symmetric cal-
culations, the normal field on the computational bound-
ary will also include cosine harmonics.)

As described above, the total normal magnetic field,
Bn = Bn

P + Bn
C , at the computational boundary is not

yet known. It depends in part on the plasma currents.
That part of the normal magnetic field that is produced
by the coil currents, Bn

C , is known a priori and is required
as input. To initialize the free-boundary calculation, a
reasonable initial guess, e.g., Bn

P = −Bn
C , is required.

This will be re-evaluated as the free-boundary iterations
proceed, as described below, to obtain a self-consistent
solution.

The extremizing states are determined by solving
∇aF = 0.

The constrained energy functional, F , is close to be-
ing quadratic in the degrees-of-freedom; except for the
1
2µaTB a term, it is quadratic. If F were strictly

quadratic in a, then ∇aF = 0 would reduce to a set of
linear equations, the coefficients of which would be given
by the second derivatives of F ; and this would allow some
reduction in the computational burden. This is also true
if µ were to be treated as parameter, rather than as a
degree-of-freedom: the equation ∇× B = µB is, given µ,
a linear equation for B, namely (A+µB)a+C = 0. Non-
trivial solutions are obtained by providing non-trivial en-
closed toroidal and poloidal fluxes.

Generally, however, to be consistent with the method
of Lagrange multipliers, µ must be treated as an inde-
pendent degree-of-freedom that is to be adjusted in order
to enforce the helicity constraint, and a Newton method
must be used to find extrema. Once the A, B and C as
defined by Eqn. 11 are computed, the Newton iterations
are quite rapid.

The
∫

A · B dv ≡ aTB a integral has a simple form.
The Jacobian factors cancel and no coordinate metric
information is required. The most-complicated non-zero
second derivatives of this term are given by

∂

∂Aφ,e,j,p

∂

∂Aθ,e,i,l

∫

A · B dv

=

∫∫∫

Tp,j cos αjT
′

l,i cos αi ds dθ dφ

−
∫∫∫

Tl,i cos αiT
′

p,j cos αj ds dθ dφ, (12)

which are not particularly complicated at all. These are
independent of geometry, and so only need to be com-
puted once, and they can be computed analytically.

The second derivatives of the
∫

B · B dv ≡ aTAa in-
tegral with respect to the Aθ,e,i,l and Aφ,e,i,l amount to
volume integrals of the products of the Chebyshev poly-
nomials and their derivatives, trigonometric terms, and
the coordinate metrics and Jacobian; and thus they de-
pend on the geometry of the adjacent interfaces and need
to be re-evaluated each time the interface geometry is
changed.

The required volume integrals are computed using a
mixed “Fourier-Gaussian” quadrature method:

∫ +1

−1

∫ 2π

0

∫

2π
NP

0

f(s, θ, φ) dφ dθ ds

≈ 2π

NP
2π

K
∑

k=1

ωk fc
1(sk), (13)

where first a Fast Fourier Transform (FFT) allows
f =

∑

i [fc
i cos(miθ − niφ) + fs

i sin(miθ − niφ)], and
where the ωk and sk are the weights and abscissae for
a Gaussian integration of resolution K. (A good check
on the numerics is to compute the integrals in Eqn. 12
using the Fourier-Gaussian quadrature and compare to
the analytic expressions.)

Given that the magnetic fields in each region have been
calculated – either by a single linear solve or by an iter-
ative Newton method – it is then possible to determine
the rotational-transform on the ideal interfaces and the
enclosed plasma currents. Depending on the particular
class of equilibrium solution that one seeks, these may
play an important role in the calculation.
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On flux surfaces, a straight fieldline angle, θs, may
be constructed with a transformation, θs = θ +
∑

i λi sin(miθ − niφ), by insisting that

B · ∇θs

B · ∇φ
= θ̇(1 + λθ) + λφ = ι-, (14)

where λ ≡ (ι-, λ1, λ2, . . . )
T is to be determined. Writing

θ̇ = −∂sAφ/∂sAθ, this becomes

∂sAθ ι- + ∂sAφ λθ − ∂sAθ λφ = −∂sAφ. (15)

(For non-stellarator-symmetry additional cosine terms
will need to be included in the angle transformation.)
If A is given, equating the Fourier coefficients of each
side amounts to a set of linear equations for λ.

There is a quirk associated with rational rotational-
transform surfaces: the transformation to the straight
fieldline angle is not unique; however, the rotational
transform is still well-defined. So, even on rational sur-
faces, the set of linear equations defined by Eqn. 15 can
be solved using Singular Value Decomposition (SVD).

In MRxMHD, only the ideal interfaces are guaranteed
by constraint to remain as intact flux surfaces during the
calculation. Given that sheet currents on the ideal inter-
faces are both mathematically admittable and physically
meaningful in the context of ideal MHD [16], the transfor-
mation to the straight fieldline angle may be multi-valued
on the ideal interfaces. The rotational-transform on the
“inner” side of Iv is determined by the tangential field
in Vv, and that on the “outer” side is determined by the
tangential field in Vv+1.

For an a priori specification of (∆ψt,v,∆ψp,v,Kv,0)
T

in each subregion, or (∆ψt,v,∆ψp,v, µv)T if the helicity-
multiplier is to be constrained rather than the helicity
itself, the rotational-transform on the interfaces can only
be determined a posteori. The calculation of the Bel-
trami field in any region is independent of the calculation
in any other region, and there is no reason to generally
expect that the rotational-transform is continuous across
the ideal interfaces.

To enforce the rotational-transform on each Iv to be
a prescribed value, and keeping the constraint of con-
served enclosed toroidal flux in each region, it is generally
required to iterate on ∆ψp,v, and either Ko,v or µv, to
match the required values of the rotational-transform on
the inner and outer boundaries of each region. A similar
argument holds for the enclosed currents.

The total current passing through a given surface is
determined by a surface integral of the current-density,
equivalently a line integral of the magnetic field,

∫

S

j · ds =

∫

∂S

B · dl . (16)

The total toroidal plasma current, including any sheet
currents that may lie on the plasma boundary, is obtained
by taking a “poloidal loop”, dl ≡ eθ dθ, lying on the
inner surface of the vacuum region (i.e., on the immediate
outside of the plasma boundary), to obtain

I =

∫ 2π

0

(−∂sAφ gθθ + ∂sAθ gθφ) /
√

g dθ. (17)

The “linking” current through the torus is obtained by
taking a “toroidal loop”, dl ≡ eφ dφ, to obtain

G =

∫ 2π

0

(−∂sAφ gθφ + ∂sAθ gφφ) /
√

g dφ. (18)

To match the required values for I and G, the values of
(∆ψt,v,∆ψp,v)T in the vacuum region must be adjusted
accordingly, with µv = 0.

Given the geometry of the ideal interfaces and hav-
ing solved the Beltrami fields in each volume, it is then
required to iteratively adjust the geometry of the Iv to
satisfy force balance across the interfaces, namely that
[[p + B2/2]] = 0. For this it is possible to use a conjugate-
gradient method (assuming that the helicity constraint
is enforced in each region). This approach has the ad-
vantages of robustly locating a minimum energy state,
rather than an extremum of F . If, instead, the helici-
ties in each region are to be adjusted in order to satisfy
a rotational-transform constraint, a multi-dimensional
Newton method can be used to iteratively determine the
geometry of the Iv.

To constrain the tangential degrees-of-freedom, addi-
tional “spectral constraints” are included [12, 24, 25].

There is one last step that is required to obtain a free-
boundary equilibrium that is consistent with the supplied
external magnetic field: namely, to determine the self-
consistent normal magnetic field at the computational
boundary that is produced by the plasma currents, Bn

P .
Given the tangential field on the plasma boundary,

Bs = Bθeθ + Bφeφ, (19)

the virtual casing principle [26–28] shows that the mag-
netic field outside the plasma produced by internal
plasma currents is equivalent to the field generated by
the surface current j = Bs ×n, where n is normal to the
surface. The field created by this surface current is given
by

B(x̄) =

∫

S

(Bs × ds) × r̂

r2
, (20)

where ds ≡ eθ × eφ dθdφ.
After the iterations have converged to a solution that

globally satisfies force balance for a given Bn
P + Bn

C , the
value of Bn

P consistent with the constructed equilibrium
can be efficiently determined using Eqn. 20.

Generally, the normal field thus computed will not
be the same as the normal field as initially supplied to
Eqn. 10. Picard iterations provide a practical solution to
this problem: the normal field used for the next “free-
boundary” iteration is given by

Bn
P → λBn

P + (1 − λ)Bn
vc, (21)

where Bn
vc is the normal field as computed using Eqn. 20,

and 0 ≤ λ ≤ 1 is a blending parameter used to provide
numerical stability. These iterations are deemed to have
converged when |Bn

vc − Bn
P | is less than a user-provided

tolerance.
A specific fixed-boundary SPEC equilibrium is de-

scribed by the plasma boundary, and the given pres-
sure, the enclosed toroidal and poloidal fluxes, and the
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helicity in each subregion, (pv,∆ψt,v,∆ψp,v,Kv). Iter-
ations over the helicity multipler µv are generally re-
quired to determine the value consistent with the helic-
ity constraint. Alternatively, the helicity multiplier it-
self may be given directly, so that an equilibrium may
be described by (pv,∆ψt,v,∆ψp,v, µv). It is also possi-
ble to define the equilibrium by providing the rotational-
transform on the inner and outer interfaces in each sub-
region, (pv,∆ψt,v, ι-−v , ι-+v ), and this will generally require
an iteration over both ∆ψp,v and µv. The total toroidal
flux enclosed by the plasma boundary, Φ, is also required.

For a free-boundary SPEC calculation, it is required
to also provide: (i) a computational boundary that lies
inside the external coils and outside the expected loca-
tion of the plasma boundary, where the self-consistent
plasma boundary will be determined iteratively; (ii) the
magnetic field normal to the computational boundary,
Bn

C ≡ BC · xθ × xφ, produced by the external set of cur-
rent coils; and (iii) the total enclosed “plasma” and “link-
ing” currents, I and G.

E. illustration in stellarator geometry

Non-axisymmetric configurations can produce
rotational-transform with no plasma currents [29].
We can thus verify SPEC vacuum solutions against a
Biot-Savart code by constructing a suitable “stellarator”
vacuum field.

The newly developed FOCUS code [30] is used to con-
struct a set of filamentary current-carrying coils that pro-
duce a magnetic field suitable for SPEC verification calcu-
lations. Given a desired “plasma boundary”, and a finite
number of modular coils that are represented as closed,
one-dimensional loops embedded in three-dimensional
space each carrying a current Ii, FOCUS adjusts the ge-
ometry of the coils, subject to engineering constraints,
and the coil currents to minimize 1

2

∫

(BC · n)2ds on the
plasma boundary, where n is normal and BC is the “coil”
field as computed using Biot-Savart. To avoid trivial so-
lutions, an additional constraint on the total enclosed
toroidal flux is also included, e.g. Φ = 1.

The non-stellarator-symmetric, non-axisymmetric
“target” plasma boundary considered here is

R(θ, φ) = Ra(θ) + δR(θ, φ),
Z(θ, φ) = Za(θ) + δZ(θ, φ),

(22)

where Ra(θ) = 3 + 0.3 cos θ and Za(θ) = −0.3 sin θ, and
δR(θ, φ) = −0.06 cos(θ − NP φ) + 0.03 sin(θ − NP φ)
+ 0.03 sin(−NP φ) and δZ(θ, φ) = −0.06 sin(θ − NP φ)
−0.06 sin(−NP φ); and where the field periodicity is
NP = 2. This surface is shown on three different cross
section in Fig. 1. FOCUS rapidly determines a coil ar-
rangement that provides an excellent approximation to
the given boundary.

Note: the following SPEC verification calculation does
not depend on how precisely the above surface is recov-
ered as a flux surface of the external vacuum field. Here-
after, the coil arrangement is assumed to be completely
arbitrary. All that is required is Bn

C , the magnetic field
normal to the computational boundary produced by the

external current-carrying coils, and the coil linking cur-
rent, G.

The computational boundary considered here is the
same as that given in Eqn. 22 but slightly larger,
Ra(θ) = 3 + 0.45 cos θ and Za(θ) = −0.45 sin θ. Both the
odd and even Fourier harmonics of the normal magnetic
field, Bn

C , produced by the external currents are easily
computed using Biot-Savart. For vacuum calculations,
the required total plasma current, I, is zero. The linking
current, G, is directly obtained from the coil configura-
tion.

For vacuum calculations, for which there are no plasma
currents, an excellent a priori guess for Bn

P is available,
namely Bn

P = 0. It is required to constrain the helicity
multipliers in each region appropriately, namely µv = 0.
The Beltrami fields in each region are then parameter-
ized by the enclosed toroidal and poloidal fluxes in each
region, (∆ψt,v,∆ψp,v)T .

However; to recover the vacuum solution it is not suf-
ficient merely to constrain the µv = 0. Doing so does
ensure that there are no volume currents in the plasma
domains, but this does not ensure that there are no sheet

currents on the Iv. Sheet currents inside the plasma do-
main means that the solution is not a vacuum, and such
currents may result in discontinuities in the rotational-
transform across the Iv.

The toroidal current, δIv passing through an infinites-
imally thin cross-sectional surface on for example the
φ = 0 plane with inner boundary just inside a given Iv

and outer boundary just outside is given by

δIv ≡
∫ 2π

0

(

B+ − B−
)

· eθ dθ, (23)

where B+ is the tangential field immediately outside Iv

in region Vv+1 and B− is the tangential field immediately
inside Iv in region Vv. To fully constrain the calculation
to recover the vacuum solution, additional constraints are
required, namely that the δIv are zero. This can easily
be enforced by allowing the ∆ψp,v to vary.

For this vacuum calculation, because there are no in-
ternal plasma currents, the virtual casing calculation of
Bn

P is not required.
A comparison of the Poincaré plots produced with the

magnetic field calculated with an NV = 2 free-boundary
SPEC calculation and that calculated directly from the
Biot-Savart law given the coil geometries and currents is
shown in Fig. 1.

Recall that NV indicates the number of regions in the
plasma domain, so that for free-boundary calculations
there are NV + 1 regions in the multi-region decompo-
sition. Choosing Nv = 2 is the minimum that simul-
taneously tests the numerical calculation in the simple-
torus region with v = 1, the toroidal annular regions with
v = 2, . . . , NV , and the vacuum region with v = NV + 1.
Adding additional regions to the calculation merely adds
additional toroidal annular regions.

Fig. 2 shows the error,

∆ ≡
∫

V

|BS − BC | dv, (24)

defined as an integral over the plasma volume of the dif-
ference between the computed SPEC magnetic field, BS ,
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and the field calculated directly using the Biot-Savart
formula with the given coil geometries and currents, BC ,
plotted against Fourier resolution. This error reliably
decreases as the numerical resolution is increased. The
radial (Chebyshev) resolution is L = 8 in each region.

F. illustration in tokamak geometry

For the above stellarator-geometry, vacuum verifica-
tion calculation it was not required to exercise the vir-
tual casing calculation. The vacuum solution was sought,
so it was appropriate and expedient to assume Bn

P = 0.
Generally, and most obviously for axisymmetric equilib-
ria, it is required to include the magnetic field produced
by the plasma.

The second verification calculation we present is for an
axisymmetric configuration. The computational bound-
ary is a circular cross-section axisymmetric toroidal
surface of major radius R0 = 1.00m and minor radius
r = 0.45m, on which the (m,n) = (1, 0) and (2, 0) sine
and cosine harmonics of Bn

C are manually adjusted to
create a single-null tokamak, as is shown in Fig. 3. Note
that the separatrix is allowed in the vacuum region.

The initial geometry of the ideal interfaces is that
of nested, circular cross section, axisymmetric tori.
The initial guess for the normal field on the compu-
tational boundary produced by the plasma currents is
Bn

P = −Bn
C , and the Picard blend parameter on Bn

P ap-
pearing in Eqn. 21 is λ = 0.4.

The pressure profile is a stepped approximation to
p(ψ) = 1 − 2ψ + ψ2 where ψ is the normalized toroidal
flux. The rotational transform constraints in each sub-
region are enforced by iterating on the enclosed poloidal
fluxs and helicity multipliers.

For this calculation, we choose NV = 7, the poloidal
and toroidal Fourier resolutions are M = 6 and N = 0,
and the Chebyshev resolution in each region is L = 6.

G. scaling

The equilibria are invariant under the following
transformation: Φ → λΦ, I → λI, G → λG, p → λ2p,
Bn

C → λBn
C , The internal numerics normalizes ∆ψt,v and

∆ψp,v to Φ. The helicity multipliers and the rotational-
transforms in each region do not change.

H. future work

The initial priority regarding development of
SPEC was to confirm accuracy and reliability. Ver-
ification calculations thus far published have included:
But, there is a great deal of computational efficiencies
that are yet to be exploited. Future numerical work on
developing the SPEC code will concentrate on exploiting
various symmetries in the matrix constructions and so
forth for speed.

An immediate physics application for free-boundary
SPEC is to explicitly calculate the effect of resonant mag-
netic perturbations on the unstable manifold surrounding
the plasma.

This manuscript is based upon work supported by
the U.S. Department of Energy, Office of Science, Of-
fice of Fusion Energy Sciences, and has been authored by
Princeton University under Contract Number DE-AC02-
09CH11466 with the U.S. Department of Energy.
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1. Appendix: Why not use the scalar potential?

The algorithm in SPEC used to compute the vacuum
magnetic field represented the magnetic field as the curl
of the magnetic vector potential. This would seem some-
what inefficient, as vacuum fields can be represented by
a scalar potential, B = ∇Φ, where

Φ = Iθ + Gφ + Φ̃(s, θ, φ), (25)

where I and G and the plasma and linking currents and
Φ̃(s, θ, φ) is a single-valued function of position.

Using the scalar potential to compute the vacuum field
has several advantages. The scalar potential is described
using a single function of position, namely Φ̃, whereas
the magnetic vector potential, A = Aθ∇θ + Aφ∇φ, is
described by two scalar functions of position, namely Aθ

and Aφ (this is assuming that the gauge freedom is used
to remove As). The constraints on the enclosed total

plasma current, I, and the enclosed coil linking current,
G, can be enforced directly and exactly. The “current”
density, j ≡ ∇×∇Φ, is identically equal to zero, regard-
less of the numerical resolution.

However, using the scalar potential has disadvantages
that stem from the inevitability of finite numerical accu-
racy. The divergence-free property of the magnetic field,
∇ ·B ≡ ∇ ·∇Φ, is not exactly equal to zero; and neither
can the boundary conditions B·xθ×xφ = 0 on the plasma
boundary and B · xθ × xφ = Bn on the computational
boundary be exactly enforced.

Algorithms for constructing the scalar potential for the
field in the vacuum region have been implemented in
SPEC , but the calculations presented herein employed
the routines for representing the vacuum magnetic field
as the curl of the magnetic vector potential. Future in-
vestigations will fully explore the advantages and disad-
vantages of both numerical representations.
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FIG. 1: A comparison between the Poincaré plots pro-
duced by using the magnetic field from a free-boundary
SPEC “stellarator geometry” calculation and by using the
magnetic field produced by the Biot-Savart law is shown. On
this scale, the agreement is excellent. A quantitative compar-
ison is shown in Fig. 2.
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FIG. 2: Error between the SPEC magnetic field and the Biot-
Savart field is plotted against Fourier resolution.
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FIG. 3: Tokamak case.


